ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Atomic Canyon partners with INL on AI benchmarks
As interest and investment grows around AI applications in nuclear power plants, there remains a gap in standardized benchmarks that can quantitatively compare and measure the quality and reliability of new products.
Nuclear-tailored AI developer Atomic Canyon is moving to fill that gap by entering into a new strategic partnership with Idaho National Laboratory to develop and release the “first comprehensive benchmark suite for evaluating retrieval-augmented generation (RAG) and large language models (LLMs) in nuclear applications.”
Kyungdoo Kim, J. Michael Doster
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 103-115
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT91-A34572
Articles are hosted by Taylor and Francis Online.
The one-dimensional drift flux model is widely used in the thermal-hydraulic simulation of nuclear power systems, particularly in simulator and control system modeling where faster-than-real-time solutions are necessary. During normal implementation, however, this model does not correctly simulate buoyancy-driven flows and countercurrent flow of liquid and vapor in vertical, stagnant channels. A technique is introduced that overcomes this limitation without using special component models, modifications of the equations of motion, or modifications in constitutive relations.