ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Y. Bruce Katayama, Langdon K. Holton, Jr., Galen N. Buck, James F. Hutchens, Mark S. Culverhouse
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 44-53
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34566
Articles are hosted by Taylor and Francis Online.
A highly contaminated cell in the Pacific Northwest Laboratory’s (PNL) 324 Building Radiochemical Engineering Facilities was recently decontaminated using a series of remote and contact techniques. The approach used in decontaminating the cell was very successful: It resulted in an 87% lower radiation dose to workers and a cost saving of 39% compared with a hands-on procedure used in another cell 2 yr earlier. Eight cycles of remote decontamination, combining use of an alkaline cleaner foam spray and pressurized water rinse, preceded manned entry. Initial radiation readings in cell C, averaging 50 rad/h, were first reduced to <200 mrad/h using remote techniques. Contact decontamination was then permissible using ultrahigh-pressure water at 270 MPa, further reducing the average radiation level in the cell to <86 mrem/h. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 17.8 mrem/m2 and $1033/m2 of cell surface area. This work is part of a larger effort sponsored by the U.S. Department of Energy’s Surplus Facilities Management Program to clean out six radioactive cells and to dismantle PNL’s pilot-scale radioactive liquidfed ceramic melter. In this program, numerous other advanced techniques are being developed and are proving valuable, particularly in lowering radiation doses.