ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Y. Bruce Katayama, Langdon K. Holton, Jr., Galen N. Buck, James F. Hutchens, Mark S. Culverhouse
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 44-53
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34566
Articles are hosted by Taylor and Francis Online.
A highly contaminated cell in the Pacific Northwest Laboratory’s (PNL) 324 Building Radiochemical Engineering Facilities was recently decontaminated using a series of remote and contact techniques. The approach used in decontaminating the cell was very successful: It resulted in an 87% lower radiation dose to workers and a cost saving of 39% compared with a hands-on procedure used in another cell 2 yr earlier. Eight cycles of remote decontamination, combining use of an alkaline cleaner foam spray and pressurized water rinse, preceded manned entry. Initial radiation readings in cell C, averaging 50 rad/h, were first reduced to <200 mrad/h using remote techniques. Contact decontamination was then permissible using ultrahigh-pressure water at 270 MPa, further reducing the average radiation level in the cell to <86 mrem/h. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 17.8 mrem/m2 and $1033/m2 of cell surface area. This work is part of a larger effort sponsored by the U.S. Department of Energy’s Surplus Facilities Management Program to clean out six radioactive cells and to dismantle PNL’s pilot-scale radioactive liquidfed ceramic melter. In this program, numerous other advanced techniques are being developed and are proving valuable, particularly in lowering radiation doses.