ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Y. Bruce Katayama, Langdon K. Holton, Jr., Galen N. Buck, James F. Hutchens, Mark S. Culverhouse
Nuclear Technology | Volume 95 | Number 1 | July 1991 | Pages 44-53
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A34566
Articles are hosted by Taylor and Francis Online.
A highly contaminated cell in the Pacific Northwest Laboratory’s (PNL) 324 Building Radiochemical Engineering Facilities was recently decontaminated using a series of remote and contact techniques. The approach used in decontaminating the cell was very successful: It resulted in an 87% lower radiation dose to workers and a cost saving of 39% compared with a hands-on procedure used in another cell 2 yr earlier. Eight cycles of remote decontamination, combining use of an alkaline cleaner foam spray and pressurized water rinse, preceded manned entry. Initial radiation readings in cell C, averaging 50 rad/h, were first reduced to <200 mrad/h using remote techniques. Contact decontamination was then permissible using ultrahigh-pressure water at 270 MPa, further reducing the average radiation level in the cell to <86 mrem/h. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 17.8 mrem/m2 and $1033/m2 of cell surface area. This work is part of a larger effort sponsored by the U.S. Department of Energy’s Surplus Facilities Management Program to clean out six radioactive cells and to dismantle PNL’s pilot-scale radioactive liquidfed ceramic melter. In this program, numerous other advanced techniques are being developed and are proving valuable, particularly in lowering radiation doses.