ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Akio Yamamoto
Nuclear Technology | Volume 145 | Number 1 | January 2004 | Pages 11-17
Technical Paper | Fission Reactors | doi.org/10.13182/NT145-11
Articles are hosted by Taylor and Francis Online.
A new solution for the control rod cusping problem in the three-dimensional pin-by-pin core calculation is proposed in this paper. The current advanced nodal code resolves this issue by estimating the one-dimensional axial flux distribution in a partially rodded node. However, direct application of this approach to the three-dimensional pin-by-pin calculation is impractical since the leakage effect in the radial direction is significant and the one-dimensional model for axial flux distribution is no longer valid. This issue has been neither addressed nor resolved yet. In this paper, a new approach that utilizes the inverse of the spectral index obtained in the assembly calculation is used to estimate the flux distribution inside the partially rodded mesh. The proposed model was implemented in the SCOPE2 code, which is a three-dimensional pin-by-pin nodal-transport code for pressurized water reactor core calculations, and a verification calculation was carried out to confirm the validity of the proposed method. From the calculation results, oscillation in the differential worth of control rods (i.e., the cusping effect) is damped, and the proposed model can almost reproduce that obtained by the reference calculation. The additional computation time for the proposed model is negligible. Consequently, the proposed control rod cusping model is an attractive method in three-dimensional pin-by-pin calculations.