ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Peter Hofmann, Mario Enrique Markiewicz, José Luis Spino
Nuclear Technology | Volume 90 | Number 2 | May 1990 | Pages 226-244
Technical Paper | Matetial | doi.org/10.13182/NT90-A34417
Articles are hosted by Taylor and Francis Online.
The chemical reaction behavior of B4C absorber material with stainless steel 1.4919 (Type 316) and Zircaloy-4 is studied in the 800 to 1600 C temperature range. The reaction kinetics for both systems can be described by parabolic rate laws. Above 1000°C, the reaction zone growth rates in the B4C/stainless steel system are about two orders of magnitude higher than those in the B4C/Zircaloy-4 system. The compatibility specimens are quickly and completely liquefied at temperatures ≥1250°C for the B4C/stainless steel reaction couples and temperatures ≥1650°C for the B4C/Zircaloy-4 reaction couples. In both reaction systems, liquefaction occurs below the melting points of the components.