ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Rob P. Rechard, Lawrence C. Sanchez, Holly R. Trellue
Nuclear Technology | Volume 144 | Number 2 | November 2003 | Pages 222-251
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT03-5
Articles are hosted by Taylor and Francis Online.
This article presents several reasonable cases in which four mechanisms - dissolution, physical mixing, adsorption, and precipitation (either chemical change or evaporation) - might concentrate fissile material in and around a disposal container for radioactive waste at the proposed repository at Yucca Mountain, Nevada. The possible masses, concentrations, and volume are then compared to criticality limits. The cases examined evaluate the geologic barrier role in preventing criticality since engineered options for preventing criticality (e.g., boron or gadolinium neutron absorber in the disposal container) are not considered. The solid concentrations able to form in the natural environment are insufficient for criticality to occur because (a) solutions of 235U and 239Pu are clearly not critical; (b) physical mixing of fissile material with the entire potential iron oxide (as goethite - FeOOH) in a waste package is not critical; (c) the adsorption of 239Pu on consolidated iron oxide in a waste package is not critical; (d) the adsorption of 235U on consolidated iron oxide in a waste package is not critical when accounting for reduced adsorption because of carbonates at high pH; (e) the filtration of iron oxide colloids, containing fissile material, by the thin invert material is not critical; (f) insufficient retention through precipitation of 235U or 239Pu occurs in the invert; (g) adsorption of 235U and 239Pu on devitrified or clinoptolite-rich tuff below the repository is not critical; (h) the average precipitation/adsorption of 235U as uranyl silicates in the tuff is not critical by analogy with calcite deposition in lithophysae at Yucca Mountain; and (i) precipitation/adsorption (caused by cyclic drying) as uranyl silicates on fracture surfaces of the tuff is not critical by analogy with the oxidation of UO2, migration of UVI, and precipitation in fractures at the Nopal I ore deposit in Mexico.