ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Cliff B. Davis
Nuclear Technology | Volume 90 | Number 3 | June 1990 | Pages 286-293
Technical Paper | RELAP/MOD2 / Nuclear Safety | doi.org/10.13182/NT90-A34394
Articles are hosted by Taylor and Francis Online.
The possibility of a flow instability in a fuel assembly during a hypothetical loss-of-coolant accident (LOCA) in the production reactors at the Savannah River Site (SRS) is currently the subject of many analyses. The Bingham pumps, which circulate flow through the Savannah River reactors, may be susceptible to cavitation because of the decrease in pressure that accompanies a LOCA. Cavitation in the Bingham pumps during a LOCA could reduce the forced flow through the assemblies and thus could promote flow instability. An analysis was performed at the Idaho National Engineering Laboratory to aid in the evaluation of the potential significance of cavitation on flow instability. The RELAP5 computer code and a model of the L-Reactor at the SRS were the primary analysis tools. A cavitation model was developed using correlations generated at Savannah River and the RELAP5 control system. Benchmark comparisons were performed between the RELAP5 cavitation model and cavitation tests performed in L-Reactor. Best-estimate calculations of a LOCA initiated by a double-ended guillotine break in the inlet piping to the reactor were then performed for a range of core powers. The LOCA calculations were used to determine the initial core power leading to the onset of cavitation and the effects of cavitation on system response. Cavitation was calculated to occur in the broken loop when the initial core power was >1400 MW. Cavitation did not cause a catastrophic reduction in core flow. The effects of cavitation were self-limiting because of feedback among the pump head, loop flow, and the available and required net positive suction head.