ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Amitzur Z. Barak, Leif Blumenau, H. Branover, A. El-Boher, Ehud Greenspan, E. Spero, S. Sukoriansky
Nuclear Technology | Volume 89 | Number 1 | January 1990 | Pages 36-51
Technical Paper | Fission Reactor | doi.org/10.13182/NT90-A34357
Articles are hosted by Taylor and Francis Online.
Possibilities for increasing efficiency, simplifying the design of the energy conversion system, and reducing the probability of sodium/water interaction in liquid-metal reactors (LMRs) using liquid-metal magnetohydrodynamic (LMMHD) energy conversion technology are investigated. Of the six different LMMHD power conversion systems considered, the LMMHD Rankine steam cycle offers the highest efficiency—up to 15% greater than a conventional LMR. The LMMHD Ericsson gas cycles, on the other hand, offer a significantly simplified and compact LMR plant design. All the LMMHD power conversion systems eliminate the sodium/water interaction problem. In addition to commercial applications, LMMHD energy conversion technology opens interesting new possibilities for special terrestrial as well as space applications of LMRs.