ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Hassan E. S. Fath, Makarem A. Hussein
Nuclear Technology | Volume 88 | Number 3 | December 1989 | Pages 307-318
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A34313
Articles are hosted by Taylor and Francis Online.
A two-dimensional computer code that is capable of predicting the moderator flow and temperature distribution inside CANDU calandria is presented. The code uses a new approach to simulate the calandria tube matrix by blocking the cells containing the tubes in the finite difference mesh. A jet momentum-dominant flow pattern is predicted in the nonisothermal case, and the effect of the buoyancy force, resulting from nuclear heating, is found to enhance the speed of circulation. Hot spots are located in low-velocity areas at the top of the calandria and below the inlet jet level between the fuel channels. A parametric study is carried out to investigate the effect of moderator inlet velocity, moderator inlet nozzle location, and geometric scaling. The results indicate that decreasing the moderator inlet velocity has no significant influence on the general features of the flow pattern (i.e., momentum dominant); however, too many high-temperature hot spots appear within the fuel channels. A moderator inlet nozzle located 174 cm below the horizontal midplane is found to give a more uniform temperature distribution with fewer and lower temperature hot spots than the present design arrangement. The flow pattern and temperature distribution are conserved under geometric scaling.