ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Yasuhiko Fujii, Makoto Okamoto, Hiroyuki Kadotani, Hidetake Kakihana
Nuclear Technology | Volume 86 | Number 3 | September 1989 | Pages 282-288
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT89-A34296
Articles are hosted by Taylor and Francis Online.
The equilibrium time for production of enriched uranium and the effective neutron multiplication factor keff are calculated for ion-exchange uranium enrichment based on the U(IV)-U(VI) electron-exchange reaction process. Experimental data are shown to fit well with the calculated equilibrium time curve. It is concluded that under the assumed process operating conditions, as much as 10 yr would be required to attain 50% 235U enrichment of the product starting with natural uranium feed. The keff calculations indicate that the U(IV)-U(VI) exchange system reaches the critical state at a production enrichment grade of 61% 235 U in anion-exchange systems. From the safety viewpoint, however, it is suggested that the product enrichment grade of the process be limited to 11% or less.