ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Masaki Suwa, Atsuyuki Suzuki
Nuclear Technology | Volume 85 | Number 2 | May 1989 | Pages 187-205
Technical Paper | Chemical Processing | doi.org/10.13182/NT89-A34240
Articles are hosted by Taylor and Francis Online.
The pinching effect in a co-decontamination extraction process is investigated with much concern for criticality safety control. To predict the pinching effect, computer codes, such as PULCO, are used to make numerical simulations. Using computer codes for criticality safety control seems to be impractical, however, because some uncertainties are inevitably associated with the calculation due to the assumptions that are included in a simulation code; thus, a safety margin must be taken into account in designing extraction equipment. A new model for inferring pinching effects is proposed. It is based on knowledge that represents the intrinsic nature of the pinching effect and a co-decontamination process holding independent of process conditions. The predictions obtained from this model are conservative, but practical from the standpoint of criticality safety control. The margin in designing equipment can be reduced if the overall reliability of a measurement system in which this model is to be incorporated is high enough to predict pinching effects. The program of this model is written in logic programming language, C-Prolog.