ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Todd K. Campbell, Edgar Robert Gilbert, George D. White, Gregory F. Piepel, Bernard J. Wrona
Nuclear Technology | Volume 85 | Number 2 | May 1989 | Pages 160-171
Technical Paper | Fuel Cycle | doi.org/10.13182/NT89-A34238
Articles are hosted by Taylor and Francis Online.
As a first phase in the investigation of the feasibility of storing light water reactor spent fuel in air, oxidation tests were performed on nonirradiated UO2 pellets over the temperature range of 150 to 345°C. The objective of the tests was to determine the important independent variables that affect the oxidation behavior of fuel. Pellets tested at the high end of the temperature range (>230°C) oxidized very rapidly from the standpoint of projected storage periods in air. These results suggest that acceptable spent-fuel storage temperatures should be <230°C. The tests also revealed that the oxidation was initially retarded by the presence of a coating, probably a higher oxide, that formed on pellets during the period of air storage before they were tested. The oxide coating became increasingly semiprotective after longer storage periods. Other variables identified as important to oxidation behavior of fuel were temperature, radiolysis of a static air atmosphere, fuel microstructure, gadolinia content, and humidity.