ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hsing Chien Yeh, William E. Kastenberg, Walter J. Karplus
Nuclear Technology | Volume 84 | Number 1 | January 1989 | Pages 23-32
Technical Paper | Fission Reactor | doi.org/10.13182/NT89-A34193
Articles are hosted by Taylor and Francis Online.
A new approach for high-speed simulation is applied to the analysis of nuclear power system dynamics. The proposed approach is to first identify inherent parallelism and then to develop suitable parallel computation algorithms. The latter includes numerical integration and table lookup techniques that can be used for achieving high-speed simulation. A performance evaluation of the proposed methodology has been completed, which is based on benchmark simulation for pressurized water reactor plant dynamics. The multirate integration algorithm and an innovative table lookup technique running on a parallel processing computer system have proved to be the most advantageous in computational speed. Moreover, by using the proposed approach, faster than real-time dynamic simulation of nuclear power plant transients can be achieved.