ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Todd K. Campbell, Edgar Robert Gilbert, Cheryl Knox Thornhill, Bernard J. Wrona
Nuclear Technology | Volume 84 | Number 2 | February 1989 | Pages 182-195
Technical Paper | Fuel Cycle | doi.org/10.13182/NT89-A34186
Articles are hosted by Taylor and Francis Online.
To support dry storage technology, oxidation tests were conducted with light water reactor spent fuel. The initial rate of weight gain for spent fuel was up to 50 times greater than the initial rate for nonirradiated pellets. Spent fuel formed measurable U4O9+x particulates at weight gains significantly higher than those at which the nonirradiated pellets formed U3O8 powder. Initial test results on three types of pressurized water reactor (PWR) spent fuel indicated that fuel type had a significant influence on weight gain. Additional tests were performed at temperature levels from 135 to 230°C on fuel with burnups from 8 to 34 GWd/ tonne U irradiated in five different reactors. The tests were conducted in static air at controlled moisture levels in a 105 R/h gamma field. In the 230°C tests, weight gains for PWR and boiling water reactor (BWR) fuels exceeded 4 wt% after 4000 h of exposure. Powder formation time on BWR fuels increased with increasing burnup; weight gain magnitudes were independent of fuel burnup.