ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Todd K. Campbell, Edgar Robert Gilbert, Cheryl Knox Thornhill, Bernard J. Wrona
Nuclear Technology | Volume 84 | Number 2 | February 1989 | Pages 182-195
Technical Paper | Fuel Cycle | doi.org/10.13182/NT89-A34186
Articles are hosted by Taylor and Francis Online.
To support dry storage technology, oxidation tests were conducted with light water reactor spent fuel. The initial rate of weight gain for spent fuel was up to 50 times greater than the initial rate for nonirradiated pellets. Spent fuel formed measurable U4O9+x particulates at weight gains significantly higher than those at which the nonirradiated pellets formed U3O8 powder. Initial test results on three types of pressurized water reactor (PWR) spent fuel indicated that fuel type had a significant influence on weight gain. Additional tests were performed at temperature levels from 135 to 230°C on fuel with burnups from 8 to 34 GWd/ tonne U irradiated in five different reactors. The tests were conducted in static air at controlled moisture levels in a 105 R/h gamma field. In the 230°C tests, weight gains for PWR and boiling water reactor (BWR) fuels exceeded 4 wt% after 4000 h of exposure. Powder formation time on BWR fuels increased with increasing burnup; weight gain magnitudes were independent of fuel burnup.