ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
David A. Petti
Nuclear Technology | Volume 84 | Number 2 | February 1989 | Pages 128-151
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34183
Articles are hosted by Taylor and Francis Online.
Silver-indium-cadmium (Ag-In-Cd) control rod behavior in severe reactor accidents is examined with a goal of improving the methodology used to estimate reactor accident source terms. Control rod behavior in both in-pile and out-of-pile experiments is reviewed. A mechanistic model named VAPOR is developed that calculates the downward relocation and simultaneous vaporization behavior of the Ag-In-Cd alloy expected after control rod failure in a severe reactor accident. VAPOR is used to predict the release of silver, indium, and cadmium vapors expected in the Power Burst Facility (PBF) severe fuel damage (SFD) 1-4 experiment. In addition, a sensitivity study is performed to examine the effects of system pressure and flow rate on control rod vapor release. Although cadmium is found to be the most volatile constituent of the alloy, all of the calculations predict that the rapid relocation of the alloy down to cooler portions of the core results in a limited release for all three control rod alloy vapors. Results of the control rod and aerosol behavior in PBF test SFD 1-4 are presented. VAPOR calculations are found to compare much better with the control rod material release in test SFD 1-4 than empirical models that do not consider relocation of the alloy away from the hotter portions of the core. The timing and magnitude of control rod material release and the potential for control rod aerosol/fission product interactions during the early phase of a severe accident are dependent on the system pressure. A better understanding of control rod material behavior during the later in-vessel phase of the accident is needed to define more accurately both the magnitude of the aerosol source and the initial composition of molten material exiting the vessel in the event of lower vessel head failure.