ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tsuyoshi Misawa, Seiji Shiroya, Keiji Kanda
Nuclear Technology | Volume 83 | Number 2 | November 1988 | Pages 162-170
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34157
Articles are hosted by Taylor and Francis Online.
A criticality safety study on a light water moderated and reflected coupled core loaded with highly enriched uranium fuel was performed in the Kyoto University Critical Assembly. The critical mass and neutron flux distribution were measured systematically as a function of the separation distance between the two cores, varying the H/235U atomic ratio (i.e., the moderator-to-fuel volume ratio). These data were analyzed with the SRAC code system to assess the capability of diffusion theory to analyze the coupled-core system. It was found that the critical mass of the coupled core showed the minimum when the two cores were separated by a certain distance depending on the neutron spectrum in the core region. The neutron flux peak value at the water gap region reached the maximum when the separation distance was 5 to 6 cm. The results calculated with the diffusion code installed in the SRAC system agreed well with the experimental data.