ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Tsuyoshi Misawa, Seiji Shiroya, Keiji Kanda
Nuclear Technology | Volume 83 | Number 2 | November 1988 | Pages 162-170
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34157
Articles are hosted by Taylor and Francis Online.
A criticality safety study on a light water moderated and reflected coupled core loaded with highly enriched uranium fuel was performed in the Kyoto University Critical Assembly. The critical mass and neutron flux distribution were measured systematically as a function of the separation distance between the two cores, varying the H/235U atomic ratio (i.e., the moderator-to-fuel volume ratio). These data were analyzed with the SRAC code system to assess the capability of diffusion theory to analyze the coupled-core system. It was found that the critical mass of the coupled core showed the minimum when the two cores were separated by a certain distance depending on the neutron spectrum in the core region. The neutron flux peak value at the water gap region reached the maximum when the separation distance was 5 to 6 cm. The results calculated with the diffusion code installed in the SRAC system agreed well with the experimental data.