ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Tsuyoshi Misawa, Seiji Shiroya, Keiji Kanda
Nuclear Technology | Volume 83 | Number 2 | November 1988 | Pages 162-170
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34157
Articles are hosted by Taylor and Francis Online.
A criticality safety study on a light water moderated and reflected coupled core loaded with highly enriched uranium fuel was performed in the Kyoto University Critical Assembly. The critical mass and neutron flux distribution were measured systematically as a function of the separation distance between the two cores, varying the H/235U atomic ratio (i.e., the moderator-to-fuel volume ratio). These data were analyzed with the SRAC code system to assess the capability of diffusion theory to analyze the coupled-core system. It was found that the critical mass of the coupled core showed the minimum when the two cores were separated by a certain distance depending on the neutron spectrum in the core region. The neutron flux peak value at the water gap region reached the maximum when the separation distance was 5 to 6 cm. The results calculated with the diffusion code installed in the SRAC system agreed well with the experimental data.