ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Jason Chao, V. K. Chexal, William H. Layman, Gary Vine, Peter J. Jensen, Adi R. Dastur
Nuclear Technology | Volume 83 | Number 3 | December 1988 | Pages 289-301
Technical Paper | Fifth International Retran Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34142
Articles are hosted by Taylor and Francis Online.
The two power peaks during the Chernobyl accident were analyzed using the system thermal-hydraulic code RETRAN-02. The time and magnitude of the first power peak predicted by the RETRAN model compared well with the data presented by the Soviets. The analysis also revealed that one of the contributing factors to the second power peak was the depressurization of the system. Depressurization occurred upon rupture of the pressure boundary, which was caused by the first power peak. The depressurization of the system generated more voids, resulting in additional reactivity insertion, which produced a second peak. A parametric study showed that the positive reactivity introduced by the scram rods and the reactivity caused by the positive void coefficient were both important in contributing to the accident.