ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Jason Chao, V. K. Chexal, William H. Layman, Gary Vine, Peter J. Jensen, Adi R. Dastur
Nuclear Technology | Volume 83 | Number 3 | December 1988 | Pages 289-301
Technical Paper | Fifth International Retran Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34142
Articles are hosted by Taylor and Francis Online.
The two power peaks during the Chernobyl accident were analyzed using the system thermal-hydraulic code RETRAN-02. The time and magnitude of the first power peak predicted by the RETRAN model compared well with the data presented by the Soviets. The analysis also revealed that one of the contributing factors to the second power peak was the depressurization of the system. Depressurization occurred upon rupture of the pressure boundary, which was caused by the first power peak. The depressurization of the system generated more voids, resulting in additional reactivity insertion, which produced a second peak. A parametric study showed that the positive reactivity introduced by the scram rods and the reactivity caused by the positive void coefficient were both important in contributing to the accident.