ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Carol Braester, Roger Thunvik
Nuclear Technology | Volume 82 | Number 1 | July 1988 | Pages 60-70
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT88-A34117
Articles are hosted by Taylor and Francis Online.
A mathematical model is used to describe the migration of gas from radioactive waste repositories. Calculations are presented for rock properties characteristic of the Forsmark area. In Sweden, the repository of medium- and low-level radioactive waste is in fractured hard rock formations at a depth of ∼50 m below sea level. Chemical reactions in the stored waste produce hydrogen, which displaces the water from the fractures and migrates toward the surface, where it is finally released into the atmosphere. The lateral gas movement is considered negligible, and computations are performed under the assumption of vertical flow. Rock permeability was determined by flow tests in vertical boreholes. Calculations were performed for two cases: a constant gas flow rate corresponding to a gas production of 33 000 kg/yr and a constant pressure corresponding to a gas cushion of 0.5 m. For the considered permeability distribution, the breakthrough at the sea bottom occurred within ∼1 h. The gas-water displacement occurred mainly through high-permeability fractures, with practically no flow through the low-permeability fractures. It is concluded that the gas formed in the cavern is released into the atmosphere almost instantaneously and does not produce any significant overpressure in the cavern.