ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Carol Braester, Roger Thunvik
Nuclear Technology | Volume 82 | Number 1 | July 1988 | Pages 60-70
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT88-A34117
Articles are hosted by Taylor and Francis Online.
A mathematical model is used to describe the migration of gas from radioactive waste repositories. Calculations are presented for rock properties characteristic of the Forsmark area. In Sweden, the repository of medium- and low-level radioactive waste is in fractured hard rock formations at a depth of ∼50 m below sea level. Chemical reactions in the stored waste produce hydrogen, which displaces the water from the fractures and migrates toward the surface, where it is finally released into the atmosphere. The lateral gas movement is considered negligible, and computations are performed under the assumption of vertical flow. Rock permeability was determined by flow tests in vertical boreholes. Calculations were performed for two cases: a constant gas flow rate corresponding to a gas production of 33 000 kg/yr and a constant pressure corresponding to a gas cushion of 0.5 m. For the considered permeability distribution, the breakthrough at the sea bottom occurred within ∼1 h. The gas-water displacement occurred mainly through high-permeability fractures, with practically no flow through the low-permeability fractures. It is concluded that the gas formed in the cavern is released into the atmosphere almost instantaneously and does not produce any significant overpressure in the cavern.