ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Brandon Rasmussen, J. Wesley Hines, Robert E. Uhrig
Nuclear Technology | Volume 143 | Number 2 | August 2003 | Pages 217-226
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3411
Articles are hosted by Taylor and Francis Online.
This work presents an empirical modeling approach combining a bilinear modeling technique, partial least squares, with the universal function approximation abilities of single hidden layer nonlinear artificial neural networks. This approach, referred to as neural network partial least squares (NNPLS), is compared to the common autoassociative artificial neural network. The NNPLS model is embedded into a graphical user interface and implemented at the Electrical Power Research Institute's Instrumentation and Control Center located at Tennessee Valley Authority's Kingston fossil power plant. Results are presented for 51 process signals with an average absolute estimation error of ~1.7% of the mean value, and sample drift detection performances are shown.