ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Brandon Rasmussen, J. Wesley Hines, Robert E. Uhrig
Nuclear Technology | Volume 143 | Number 2 | August 2003 | Pages 217-226
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3411
Articles are hosted by Taylor and Francis Online.
This work presents an empirical modeling approach combining a bilinear modeling technique, partial least squares, with the universal function approximation abilities of single hidden layer nonlinear artificial neural networks. This approach, referred to as neural network partial least squares (NNPLS), is compared to the common autoassociative artificial neural network. The NNPLS model is embedded into a graphical user interface and implemented at the Electrical Power Research Institute's Instrumentation and Control Center located at Tennessee Valley Authority's Kingston fossil power plant. Results are presented for 51 process signals with an average absolute estimation error of ~1.7% of the mean value, and sample drift detection performances are shown.