ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Marcel Y. Ballinger, Peter C. Owczarski, K. Hashimoto, G. Nishio, S. Jordan, W. Lindner
Nuclear Technology | Volume 81 | Number 2 | May 1988 | Pages 278-292
Technical Paper | Nuclear Aerosol Science / Nuclear Safety | doi.org/10.13182/NT88-A34097
Articles are hosted by Taylor and Francis Online.
For analyzing the thermodynamic and radiological consequences of solvent fire accidents in reprocessing plants, intensive investigations on burning contaminated condensible liquids were performed at Kernforschungszentrum Karlsruhe (KfK), Pacific Northwest Laboratory (PNL), and Japan Atomic Energy Research Institute (JAERI). In small- and large-scale tests, KfK studied the behavior of kerosene, tributyl phosphate, HNO3 mixture fires in open air and closed containments. The particle release from uranium-contaminated pool fires was investigated. Different filter devices were tested. For analyzing fires, PNL has developed the FIRIN computer code and has generated small-scale fire data in support of that code. The results of the experiments in which contaminated combustible liquids were burned demonstrate the use of the FIRIN code in simulating a solvent fire in a nuclear reprocessing plant. To demonstrate the safety evaluation of a postulated solvent fire in an extraction process of a reprocessing plant, JAERI conducted large-scale fire tests. Behavior of solvent fires in a cell and the integrity of high-efficiency particulate air (HEPA) filters due to smoke plugging were investigated. To evaluate confinement of radioactive materials released from the solvent fire, the ventilation systems with HEPA filters were tested under postulated fire conditions.