ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Alan L. Nichols, Brian R. Bowsher
Nuclear Technology | Volume 81 | Number 2 | May 1988 | Pages 233-245
Technical Paper | Nuclear Aerosol Science / Nuclear Safety | doi.org/10.13182/NT88-A34094
Articles are hosted by Taylor and Francis Online.
Aerosols encountered in the nuclear industry require physical and chemical characterization to determine their transport properties and guarantee their cleanup and control. Such data are also necessary when assessing the consequences of hypothetical severe reactor accidents in which relatively high concentrations of aerosol could be generated containing fission product radionuclides. The concentrations of individual elements and chemical compounds within the airborne particles can be measured, and depth profiling has been used to study aerosol formation mechanisms. The various analytical techniques used to measure the chemical properties of nuclear-based aerosols are high-lighted. The merits and disadvantages of each method are discussed, and guidelines are provided for future developments.