ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
F. Beonio-Brocchieri, Helmut Bunz, Werner Schöck, Ian H. Dunbar, Jean Gauvain, Shinya Miyahara, Yoshiaki Himeno, Kunihisa Soda, Norihiro Yamano
Nuclear Technology | Volume 81 | Number 2 | May 1988 | Pages 193-204
Technical Paper | Nuclear Aerosol Science / Nuclear Safety | doi.org/10.13182/NT88-A34092
Articles are hosted by Taylor and Francis Online.
Codes used to simulate aerosol behavior inside containments of nuclear power plants after assumed severe accidents are described. The basic aerosol physical equations of all codes are the same worldwide. Only minor differences can be detected regarding some special aerosol physical processes. These differences are not inherent but caused by boundary conditions, which are of special interest for the code users. The comparison of the single codes also shows that the general agreement achieved by the numerical treatment of the aerosol equation requires an appropriate discretization of the distribution function to yield stable solutions under all arbitrary conditions. The application of solutions based on special distribution functions should, therefore, be restricted to certain scenarios.