ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
D. J. Sherwood, A. L. Ward, G. D. Johnson
Nuclear Technology | Volume 78 | Number 1 | July 1987 | Pages 83-89
Technical Paper | Material | doi.org/10.13182/NT87-A34012
Articles are hosted by Taylor and Francis Online.
For fast reactors to be economically competitive with thermal reactors, incremental costs associated with construction must be regained by the fuel cycle. This can be accomplished either by reprocessing fuel or by extending its core residency period. Consideration is given to a means for extending fast reactor fuel element life. In particular, fuel element structural materials can be made more resistant to effects of the severe fast reactor core environment. High operating temperature and fast neutron flux alter the mechanical and physical properties of these materials, and fuel element integrity can be significantly compromised as a result. Thermal and irradiation processes adversely affecting fuel element materials are examined, along with the results of U.S. Department of Energy development efforts aimed at mitigating or eliminating these effects.