ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Masami Matsuda, Kiyomi Funabashi, Fumio Kawamura, Shunsuke Uchida, Katsumi Ohsumi
Nuclear Technology | Volume 78 | Number 1 | July 1987 | Pages 62-68
Technical Paper | Chemical Processing | doi.org/10.13182/NT87-A34009
Articles are hosted by Taylor and Francis Online.
Weakly acidic carboxylic resin, with no sulfur atoms, was selected as an alternative to sulfonic cation exchange resin for water treatment in nuclear power plants. Pyrolysis experiments showed that no corrosive SOx gas was produced by the former, and its residual ratio was one-third that of the latter conventional resin. Spent resin treatment then becomes relatively simple for the new resin. Subsequently, filtration characteristics were examined by use of simulated condensate water, assuming that the resin was applied to a filter demineralizer. The resin lifetime was ∼1.5 times that of the conventional one, suggesting that the amount of spent resin generated from a filter demineralizer could be reduced to about two-thirds. Therefore, the carboxylic resin showed favorable features for both water purification and spent resin treatment.