ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Masatoshi Kureta, Hajime Akimoto
Nuclear Technology | Volume 143 | Number 1 | July 2003 | Pages 89-100
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT143-89
Articles are hosted by Taylor and Francis Online.
Critical power experiments were carried out, and the critical power correlation for axially uniformly heated tight bundles has been derived based on the present experimental data and data sets measured by the Bettis Atomic Power Laboratory. The shape of the test section simulates the fuel assembly of the reduced-moderation water reactor (RMWR), which is a water-cooled breeder reactor with a core of the tight triangular fuel rod arrangement. The obtained correlation covers the following conditions: channel geometry (triangular arrangement bundle of 7 to 20 rods, 6.6 to 12.3 mm in rod diameter, 1.0- to 2.3-mm gap between rods, 1.37 to 1.8 m in heated length), mass velocity of 100 to 2500 kg/(m2s), inlet quality of -0.2 to 0, pressure of 2 to 8.5 MPa, and radial peaking factor of 0.98 to 1.5, which include uniform, center-peak, and liner transverse heat flux distribution data. An excellent agreement was obtained between the developed correlation and data (371 points) within an error of ±4.6%.