ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Tatsuo Izumida, Fumio Kawamura, Koichi Chino, Makoto Kikuchi
Nuclear Technology | Volume 78 | Number 2 | August 1987 | Pages 185-190
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A33996
Articles are hosted by Taylor and Francis Online.
A new solidification technique using cement-glass, which is a mixture of sodium silicate and cement, was studied for solidification of sodium borate salt of liquid waste generated from pressurized water reactor plants. When the sodium borate salt was solidified with the cement-glass, the resulting package contained eight times more sodium borate than was found in cement because it did not interact with sodium borate. The leaching ratio of cesium ion from the cement-glass package was one-tenth that of cement. Its low leaching ratio was due to the high cesium adsorption ability of cement-glass. The ratio could be theoretically evaluated by considering the cesium adsorption-de-sorption equilibrium.