ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Masanori Takahashi, Masayuki Muroi, Atsuyuki Inoue, Masahiro Aoki, Makoto Takizawa, Kenkichi Ishigure, Norihiko Fujita
Nuclear Technology | Volume 76 | Number 2 | February 1987 | Pages 221-228
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A33876
Articles are hosted by Taylor and Francis Online.
Bentonite clay is one of the most promising candidates for use as buffer material in the geological disposal systems of high-level waste. However, very little has been reported on the ionic species contained in bentonite clay itself, especially the anion species. Chemical analyses of bentonite clay materials were carried out. It was found that the major anion species contained in the bentonite clay materials are , Cl‾, and CO2 species. The amounts of these differ among the clay samples depending on the origins and the processing of the clay materials. A clay material used in a series of our experiments was also analyzed for cation species contained, and adsorption experiments were carried out for the major ions contained in the clay materials. No adsorption of the anions on the clay particles was observed, and it was found that the adsorption of Na+ can be explained as the ion exchange equilibrium between Na+ and H+.