ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Samir M. Sami
Nuclear Technology | Volume 75 | Number 3 | December 1986 | Pages 283-297
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33842
Articles are hosted by Taylor and Francis Online.
A realistic velocity difference scheme has been developed for calculating the drift parameters in both horizontally and vertically oriented sections of the primary heat transport systems of CANDU reactors. This model predicts the unequal velocity effects, spatially and temporally. It can be used to describe the slip in transient and multipurpose thermohydraulic codes. The transient velocity difference equation of this model is an arrangement of the two-fluid model equations. This equation describes the time-dependent relation between the phase velocities. This is a function of the pressure gradient, phase inertias, volume fraction, flow regime, interfacial forces, and additional constitutive relations. In addition, the model includes a package of momentum exchange constitutive laws to calculate the interphase momentum exchange parameters and virtual mass coefficients. The parameters necessary for the integration of this model into CANDU thermohydraulic codes (SOPHT, FIREBIRD) are expressed in terms of the dynamic difference velocity. These parameters are the drift mass flow rate, drift velocity, distribution parameter, flow quality, effective density, and flow enthalpy. Numerical results revealed that the velocity difference model fairly predicted the drift flux parameters when compared with those calculated by existing slipdrift correlations in the SOPHT and FIREBIRD codes, other drift flux models, and with certain experimental data reported in the literature.