ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Samir M. Sami
Nuclear Technology | Volume 75 | Number 3 | December 1986 | Pages 283-297
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33842
Articles are hosted by Taylor and Francis Online.
A realistic velocity difference scheme has been developed for calculating the drift parameters in both horizontally and vertically oriented sections of the primary heat transport systems of CANDU reactors. This model predicts the unequal velocity effects, spatially and temporally. It can be used to describe the slip in transient and multipurpose thermohydraulic codes. The transient velocity difference equation of this model is an arrangement of the two-fluid model equations. This equation describes the time-dependent relation between the phase velocities. This is a function of the pressure gradient, phase inertias, volume fraction, flow regime, interfacial forces, and additional constitutive relations. In addition, the model includes a package of momentum exchange constitutive laws to calculate the interphase momentum exchange parameters and virtual mass coefficients. The parameters necessary for the integration of this model into CANDU thermohydraulic codes (SOPHT, FIREBIRD) are expressed in terms of the dynamic difference velocity. These parameters are the drift mass flow rate, drift velocity, distribution parameter, flow quality, effective density, and flow enthalpy. Numerical results revealed that the velocity difference model fairly predicted the drift flux parameters when compared with those calculated by existing slipdrift correlations in the SOPHT and FIREBIRD codes, other drift flux models, and with certain experimental data reported in the literature.