ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Dov Ingman, Leib Reznik
Nuclear Technology | Volume 74 | Number 3 | September 1986 | Pages 243-259
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33827
Articles are hosted by Taylor and Francis Online.
A multicomponent system, specified by a high level of power generation and transformation as a thermodynamics system with strong interaction between the elements, is considered in the reliability analysis. The reliability of each system element is dependent on the average energy of the system. The approach, which aims to give proper consideration to the system / element interaction, is based on the energy accumulation aspects of various processes of the element and the system deterioration. The phenomena of coherent blockages of core coolant channels for different geometrical configurations serve to demonstrate that there exists, in principle, a possibility of failure of the system through cooperative failures of its elements. The investigation is based on statistical thermodynamics, particularly on the approach of “phase transitions,” and also on the percolation theory results. The developed model has been employed to evaluate the propagation rate of the subchannel blockages under critical conditions. In spite of the simplified character of the model, it has demonstrated the necessity of including consideration of collective phenomena in the reliability analysis of multicomponent systems characterized by a high power level. The developed approach permits construction of a minimum set of generalized system parameters that describe the critical system behavior. A quantitative determination of these parameters and an application of the model to specific reactor core designs and severe transient scenarios will be the subject of further investigation.