ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
A. B. Reynolds, J. L. Kelly, S. T. Kim
Nuclear Technology | Volume 74 | Number 1 | July 1986 | Pages 76-83
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT86-A33820
Articles are hosted by Taylor and Francis Online.
Fractional release rates of relatively low volatility fission products from fuel have been measured at the Sascha facility at Karlsruhe, Federal Republic of Germany, and elsewhere as a function of fuel temperature. A mass transfer model was developed to calculate these release rates. Of six materials (fission products or fission product oxides) analyzed at temperatures from 1800 to 2400°C, favorable comparisons between experiments and theory were obtained for silver, antimony, ruthenium, BaO, and ZrO2, while insufficient experimental data were available for SrO. The favorable comparison for the five materials provides a strong argument that vaporization mass transfer is controlling the release rate for certain low-volatility fission products.