ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
A. B. Reynolds, J. L. Kelly, S. T. Kim
Nuclear Technology | Volume 74 | Number 1 | July 1986 | Pages 76-83
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT86-A33820
Articles are hosted by Taylor and Francis Online.
Fractional release rates of relatively low volatility fission products from fuel have been measured at the Sascha facility at Karlsruhe, Federal Republic of Germany, and elsewhere as a function of fuel temperature. A mass transfer model was developed to calculate these release rates. Of six materials (fission products or fission product oxides) analyzed at temperatures from 1800 to 2400°C, favorable comparisons between experiments and theory were obtained for silver, antimony, ruthenium, BaO, and ZrO2, while insufficient experimental data were available for SrO. The favorable comparison for the five materials provides a strong argument that vaporization mass transfer is controlling the release rate for certain low-volatility fission products.