ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Kazuichiro Seki, Shigeru Kuwabara, Katsumi Tanimura, Shinsuke Matsumoto, Masao Toba
Nuclear Technology | Volume 74 | Number 1 | July 1986 | Pages 27-37
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33816
Articles are hosted by Taylor and Francis Online.
An analysis model has been derived on the vibration of fuel rods in a pressurized water reactor fuel assembly, which is induced by crossflow into the reactor core through a baffle gap. The distribution of speeds of fluid gushing out from a narrow slit onto the fuel rods arrayed in a lattice were first measured and then the force of fluid on fuel rods from an experiment using a mock-up. The force on fuel rods was fitted out using parameters that describe rod position. The amount of energy a fuel rod receives from the fluid through one cycle of its vibrations was calculated as a positional integration of the fluid force. The vibration mode of the fuel rod and the effective momentum flux of the fluid were calculated using the energy. The result of analyzing the effective momentum flux agrees well with the measured result, demonstrating the adequacy of the analysis model developed.