ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Pedro B. Macedo, Aaron Barkatt, Barbara C. Gibson, Charles J. Montrose
Nuclear Technology | Volume 73 | Number 2 | May 1986 | Pages 199-209
Technical Paper | Performance of Borosilicate Glass High-Level Waste Forms in Disposal System / Radioactive Waste Management | doi.org/10.13182/NT86-A33784
Articles are hosted by Taylor and Francis Online.
Evaluating the durability of nuclear waste glass material in terms of leach test results requires that one make reasonable extrapolations from laboratory experiments performed over a few years’ duration to repository behavior over time scales ranging up to tens of thousands of years. These require an understanding of the mechanisms that govern the leaching of glass as well as an accompanying predictive capability. By comparing the measured behavior with the predictions of mechanistic models, it can be concluded that at high flow rates, kinetic factors are predominant, while at low flow rates, saturation of the aqueous medium with respect to major matrix elements, particularly with respect to silica present in the glass and in its alteration products, becomes a controlling factor. A mathematical framework in which this synthesized picture can be expressed is presented. A careful analysis of the situation indicates that under likely repository conditions the fractional annual release rates can be expected to fall below the U.S. Nuclear Regulatory Commission criterion of 10−5 yr−1.