ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Dawk Hwan Ahn, Samuel H. Levine
Nuclear Technology | Volume 71 | Number 3 | December 1985 | Pages 535-547
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33676
Articles are hosted by Taylor and Francis Online.
A new method has been developed to automatically reload and deplete a pressurized water reactor (PWR) so that both the enriched inventory requirements during the reactor cycle and the cost of reloading the core are minimized. This is achieved through four stepwise optimization calculations: (a) determination of the minimum fuel requirement for an equivalent three-region core model, (b) optimal selection and allocation of fuel assemblies for each of the three regions to minimize the reload cost, (c) optimal placement of fuel assemblies to conserve regionwise optimal conditions, and (d) optimal control through poison management to deplete individual fuel assemblies to maximize end-of-cycle keff. The new method differs from previous methods in that the optimization process automatically performs all tasks required to reload and deplete a PWR. In addition, the previous work that developed optimization methods principally for the initial reactor cycle was modified to handle subsequent cycles with fuel assemblies having burnup at beginning of cycle. Application of the method to the fourth reactor cycle at Three Mile Island Unit I has shown that both the enrichment and the number of fresh reload fuel assemblies can be decreased and fully amortized fuel assemblies can be reused to minimize the fuel cost of the reactor.