ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Kazuo Haga, Yoshihiro Kikuchi
Nuclear Technology | Volume 70 | Number 2 | August 1985 | Pages 220-234
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT85-A33646
Articles are hosted by Taylor and Francis Online.
A series of experiments was performed to assess the thermal effect of a burst-type fission gas release from fuel pins. Simulated fission product gas was injected continuously and transiently from the central pin of a 37-pin bundle. The opposite pin surface impinged on by the released gas showed an extreme temperature rise under high coolant-flow conditions. Comparison of measured temperature change data with analytical results by a simple computer code revealed that the ratios of the heat transfer coefficient after gas injection to those of sodium single-phase flow were in the range of 0.05 to 0.15, irrespective of the magnitude of the gas plenum pressure and the nozzle diameter. The estimated pin-surface temperature increased by gas release in actual reactor operating conditions was less than the saturation temperature of sodium. The measured pressure pulse at the transient gas release was <0.2 times the initial gas plenum pressure.