ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Clarence E. Lee, Joe W. Durkee
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 218-235
Analyse | doi.org/10.13182/NT85-A33633
Articles are hosted by Taylor and Francis Online.
An analytic solution of the one-dimensional steadystate multiregion concentration diffusion decay equation is constructed. The solution is used to determine the diffusion coefficients of metallic fission products in high-temperature gas-cooled reactor fuel particles from experimental measurement of the concentrations using Davidon’s variable metric method for chi-square minimization. Typically, for two to four material regions with 50 measured concentration data points, the diffusion coefficients and their associated uncertainties can be determined rapidly (<8 s on the AMDAHL 470/V6). Using analytical solutions, the diffusion coefficients can be determined ∼25 times faster than using finite difference solutions. The methodology is applied to Zoller’s concentration measurements of 137Cs and 90Sr.