ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Clarence E. Lee, Joe W. Durkee
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 218-235
Analyse | doi.org/10.13182/NT85-A33633
Articles are hosted by Taylor and Francis Online.
An analytic solution of the one-dimensional steadystate multiregion concentration diffusion decay equation is constructed. The solution is used to determine the diffusion coefficients of metallic fission products in high-temperature gas-cooled reactor fuel particles from experimental measurement of the concentrations using Davidon’s variable metric method for chi-square minimization. Typically, for two to four material regions with 50 measured concentration data points, the diffusion coefficients and their associated uncertainties can be determined rapidly (<8 s on the AMDAHL 470/V6). Using analytical solutions, the diffusion coefficients can be determined ∼25 times faster than using finite difference solutions. The methodology is applied to Zoller’s concentration measurements of 137Cs and 90Sr.