ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Werner Faubel, Sameh A. AL
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 178-185
Chemical Processing | doi.org/10.13182/NT85-A33629
Articles are hosted by Taylor and Francis Online.
A new procedure has been developed to decontaminate carbonate wash streams relevant to the Purex process from alpha-emitting actinides (238U, 237Np, 240Pu) and the fission products (95Zr, 144Ce, 106Ru). The actinides, forming with Na2CO3 carbonato complexes, for example, [UO2(CO3)3]4-, [NpO2(CO3)3]4-, and unstable Pu(IV) complexes, are retained on the weakly basic anion exchanger resin Bio Rex 5. Plutonium(IV) forms complexes or precipitates nearly completely, when standing for some time or heating up to 70°C. The precipitate can be separated from the carbonate solution by a 2-µm filter mounted in front of the column. Neptunium and the fission products coprecipitate partially at the same time and therefore are also retained. Uranium and the species (neptunium and fission products) remaining in the filtrate are also removed by the Bio Rex 5 column, whereby the effluent of the column is decontaminated to >99%. The recovery of the actinides and fission products from the resin and the filter is performed with three column volumes of 4MHNO3 >99%.