ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Calvin C. Oliver, Edward T. Dugan
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 161-169
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33627
Articles are hosted by Taylor and Francis Online.
Thermodynamic and transport property predictions for UF6-He gas mixtures are presented covering the operating range of conceptual, circulating gas core nuclear systems. The gas mixtures of interest contain 10 to 20% helium by mass, which corresponds to helium mole fractions of 0.9 and higher. For UF6 partial pressure <10 atm and temperatures in the range of 500 to 2000 K, mixture density can be determined from the ideal gas equation of state with an uncertainty of <10%. Compared to pure UF6, the thermal conductivity of the mixtures is an order of magnitude greater; specific heat is doubled while viscosity is changed very little. For identical systems, it is shown that heat transfer rates for UF6-He mixtures are five to six times greater than for pure UF6.