ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Erik Johansson
Nuclear Technology | Volume 68 | Number 2 | February 1985 | Pages 263-268
Technical Note | Fabrication of Components of the Creys-Malville Plant / Fission Reactor | doi.org/10.13182/NT85-A33559
Articles are hosted by Taylor and Francis Online.
The recycling of plutonium in close-packed pressurized water reactor (PWR) lattices, leading to a higher conversion ratio than recycling in a normal lattice, has been studied by calculations. These calculations were performed with the multigroup cell and assembly transport theory code CASMO. This code, widely used for normal light water reactor (LWR) lattices, was tested for close-packed ones by calculations on experiments. The outcome of these tests was reasonably good for the parameters of greatest importance in close-packed plutonium-recycle lattices. Subsequently, the code was applied to an LWR system containing PWRs with such lattices. The emphasis in this application was on the net consumption of natural uranium and separative work. In an asymptotic (steady-state) situation for the close-packed lattice case, these amounts turned out to be ∼35% below the corresponding ones for plutonium recycling in a normal lattice.