ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Josef Schaefer, Detlev Stöver, Rudolf Hecker
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 537-549
F. Hydrogen and Tritium Permeation | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33476
Articles are hosted by Taylor and Francis Online.
The phenomenon of hydrogen permeation through high-temperature alloys has been recognized as an important problem in developing nuclear energy production systems. Investigations are concerned with experimental techniques and requirements to conform with the concept of practical development. After establishing the data of hydrogen permeation through bare alloys, efforts are directed toward investigating the permeation behavior of surface oxidized walls. In this way 12 alloy types are examined under various conditions. The reduced penetration occurring under “process gas” atmosphere is determined by the “impeding factor”: It is the ratio of permeation rates measured under special conditions in the case of bare alloy annealed in pure hydrogen and in the case of its oxidized surface. One influence on the permeation behavior is proceeding from the metallic substrate of oxide coating: Centricast and wrought types of alloys are effective in different ways. Varied treatment before coating was significant only in the case of annealing in hydrogen. Most influential is the temperature acting upon both the permeating and the coating quality in a compensating manner. Temperature cycling in oxidizing atmosphere points to improved impeding. The relationship between the oxidation potential and the impeding conditions is not yet clear. In the temperature range between 650 and 900°C, a square root behavior below ∼5-bar hydrogen pressure is dominant, whereas a linear pressure dependence was detected above. A crossover range is obvious, especially distinct at higher temperatures. The influence of chromium oxide in the corrosion cover is manifested by metallurgical postexamination results corresponding with permeation data of selected samples.