ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. R. Johnson, L. D. Thompson, Thomas A. Lechtenberg
Nuclear Technology | Volume 66 | Number 1 | July 1984 | Pages 88-101
A. Selection, Production, and Development of Alloys for HTGR Component | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33458
Articles are hosted by Taylor and Francis Online.
The utilization of the high-temperature gas-cooled reactor (HTGR) for advanced or process heat applications will require the use of wrought components operating at temperatures up to 1000°C (1832°F) for times approaching 30 yr. Alloys for such components must withstand the corrosive effects (carburization and oxidation) of the impure helium primary coolant environment and maintain adequate elevated temperature strength. Commercially available wrought alloys have been found to be seriously limited for such applications because of their inherently poor resistance to corrosion in impure helium. As one approach to the solution of this problem, a program has been initiated to develop wrought alloys having a better combination of corrosion resistance and high-temperature strength, under advanced HTGR conditions, than commercial alloys currently available. This program culminated in 1980 with the design, melting, and fabrication of ten experimental Ni-Cr-Mo-W-Al-Ti-Zr-C alloys and with the initiation of efforts to evaluate their corrosion and mechanical behavior. Results of tests showed that all the experimental alloys exhibited superior carburization resistance in advanced reactor helium. In addition, several of the alloys exhibited excellent mechanical properties, including, in the case of one alloy, creep rupture strength at 900°C (1652°F), significantly better than that of the commercial alloy Inconel-617.