ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Rikizo Watanabe
Nuclear Technology | Volume 66 | Number 1 | July 1984 | Pages 69-74
A. Selection, Production, and Development of Alloys for HTGR Component | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33456
Articles are hosted by Taylor and Francis Online.
A grain boundary precipitation treatment was studied for the purpose of improving the high-temper-ature low-cycle fatigue strength of a Ni-23% Cr- 18% W alloy, SSS113M, which had been developed as an intermediate heat exchanger material of very high temperature reactors and evaluated as the best alloy in the national R&D program of nuclear steelmaking in Japan. A conventional standard solution treatment of 1300°C × 1 h water quenched does not cause any grain boundary precipitation in SSS113M, but an additional heat treatment of 1250°C × 1 h causes discontinuous grain boundary precipitation of the alpha-tungsten phase. This grain boundary precipitation treatment results in two- to fivefold increases of low-cycle fatigue lives at 800°C as well as slight increases of the creep and stress rupture strength at 1000°C.