ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Deep Isolation asks states to include waste disposal in their nuclear strategy
Nuclear waste disposal technology company Deep Isolation is asking that the National Association of State Energy Officials (NASEO) consider how spent nuclear fuel and radioactive waste will be managed under its strategy for developing advanced nuclear power projects in participating states.
Hirokazu Tsuji, Tatsuo Kondo
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 347-353
C.3. Fatigue Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33437
Articles are hosted by Taylor and Francis Online.
Strain controlled low-cycle fatigue tests were conducted on four nickel-base heat-resistant alloys at 900 °C in simulated high-temperature gas-cooled reactor (HTGR) environments and high vacuums of ∼10−1 Pa. The observed behaviors of the materials were different and divided into two groups when tests were made in simulated HTGR helium, while all materials behaved similarly in vacuums. The materials that have relatively high ductility and compatibility with impure helium at test temperature showed considerable resistance to the fatigue damage in impure helium. On the other hand, the alloys qualified with their high creep strength were seen to suffer from the adverse effects of impure helium and the trend of intergranular cracking as well. The results were analyzed in terms of their susceptibility to the environment-enhanced fatigue damage by examining the ratios of the performance in impure helium to in vacuum. The materials that showed rather unsatisfactory resistance were considered to be characterized by their limited ductility partly due to their coarse grain structure and susceptibility to intergranular oxidation. Moderate carburization was commonly noted in all materials, particularly at the cracked portions, indicating that carbon intrusion had occurred during the crack growth stage.