ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
George J. Licina, Dwight R. Springer, Prodyot Roy
Nuclear Technology | Volume 65 | Number 1 | April 1984 | Pages 92-101
Technical Paper | Postaccident Debris Cooling / Nuclear Safety | doi.org/10.13182/NT84-A33376
Articles are hosted by Taylor and Francis Online.
Chemical methods are the primary means for detecting steam generator leaks in liquid-metal fast breeder reactor (LMFBR) systems. Both hydrogen and oxygen detectors may be used for this purpose. Diffusion of hydrogen through a thin nickel membrane provides the basis for the primary LMFBR leak detection tool. Spurious sources of hydrogen (e.g., from waterside corrosion) and partition of hydrogen between sodium and cover gas are major disadvantages with the use of leak detection systems that incorporate only hydrogen monitors. Electrochemical oxygen meters, which are not subject to these problems, provide a complementary method for leak detection. Hydrogen meters (both diffusion tube and electrochemical designs) and electrochemical oxygen meters have demonstrated the capability to detect water intrusions in sodium test systems.