ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Willard G. Winn, Norman P. Baumann
Nuclear Technology | Volume 64 | Number 3 | March 1984 | Pages 300-306
Technical Paper | Technique | doi.org/10.13182/NT84-A33359
Articles are hosted by Taylor and Francis Online.
Tritiated process water is monitored by detecting the D2O component via the 2D(γ,n)1H reaction. A probe containing a 1- to 7-mCi 24Na (15-h) gamma source and six 3He neutron detectors produces and monitors the 2D(γ, n)1H reaction. A variety of probe configurations were examined for D2O detection sensitivity. The corresponding detection limits range from 6 to 280 µl for D2O droplets and 1 to 13 µl/cm for D2O streams, when 10-min neutron counting with a 1-mCi gamma source is used. Results from two field applications illustrate the utility of the monitor.