ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
K. Linga Murty, R. P. Shogan, W. H. Bamford
Nuclear Technology | Volume 64 | Number 3 | March 1984 | Pages 268-274
Technical Paper | Material | doi.org/10.13182/NT84-A33356
Articles are hosted by Taylor and Francis Online.
The effect of neutron radiation on the fracture characteristics of an A533 Grade B Class 1 pressure vessel steel was investigated using standard and instrumented precracked Charpy impact tests. Use of the instrumented impact test with precracked specimens has allowed fracture toughness values to be determined from the Charpy test. Neutron exposure resulted in minute decreases in the upper-shelf Charpy energy and fracture toughness, and an increase in the ductile brittle transition temperature (DBTT). The Charpy transition temperature shifted ∼29 K while the fracture toughness shift was ∼20 K. The temperature variation of the dynamic yield strength exhibited dips at DBTT for both unirradiated archive and irradiated materials.