ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Andrew C. Kauffman, Don W. Miller, Thomas D. Radcliff, Keith W. Maupin, Daniel J. Mills, V. Matthew Penrod
Nuclear Technology | Volume 140 | Number 2 | November 2002 | Pages 222-232
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT02-A3335
Articles are hosted by Taylor and Francis Online.
An in-reactor test facility has been designed and built at The Ohio State University Research Reactor to evaluate the static and dynamic performance of nuclear reactor in-core sensors in environmental and neutronic conditions comparable to those expected in a high-temperature gas reactor. The primary objective for design and construction of this facility was to evaluate the performance of prototype constant-temperature power sensors. The facility can test sensors and materials over a wide range of temperatures up to 800°C, over a range of Reynolds numbers that can be varied to evaluate thermal-dynamic response, and at a reasonable neutron flux value that can be oscillated nearly 7% (up to 100 Hz eventually) to deterministically evaluate sensor transfer functions. Testing has demonstrated that this facility safely performs its desired functions with the current limitation of a 50-Hz maximum neutron flux oscillation speed.