ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Takashi Honda, Masakiyo Izumiya, Akira Minato, Katsumi Ohsumi, Hideo Matsubayashi
Nuclear Technology | Volume 64 | Number 1 | January 1984 | Pages 35-42
Technical Paper | Material | doi.org/10.13182/NT84-A33325
Articles are hosted by Taylor and Francis Online.
Cobalt-60 contained in reactor water primarily causes contamination of boiling water reactor (BWR) out-of-core components. To elucidate the contamination mechanism, the deposition of radionuclides on stainless steels has been evaluated in actual reactor water at a commercially operating BWR. No significant difference was observed between Types 304 and 316L stainless steel. The deposition rate of 60Co was mainly controlled by the growth of oxide films formed on steel. The deposition kinetics of anion 51Cr was very different from that of cations 60Co and 58Co. An Arrhenius temperature dependence was established for the deposition rate of Co between 130 and 240°C.