ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John O. Barner, Richard J. Guenther, Maxwell D. Freshley, Carl E. Crouthamel
Nuclear Technology | Volume 63 | Number 1 | October 1983 | Pages 63-81
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33303
Articles are hosted by Taylor and Francis Online.
The fuel cladding mechanical interaction behavior of developmental fuel rods irradiated in the Halden Boiling Water Reactor was evaluated based primarily on rod elongation measurements made during steady-state and power-ramping irradiation. The developmental fuel rod designs were selected based on attributes that were expected to reduce pellet-cladding interaction (PCI) failures during irradiation. Testing results were compared to a nonpressurized reference design with dished-pellet fuel. For the reference rods, there was a relationship between thermal feedback and fuel-cladding mechanical interaction during steady-state irradiation. Significant cladding stresses developed in both the axial and hoop directions in the reference rods during power ramping. During power ramping the general cladding stress distribution in fuel rods with annular fuel pellets was primarily axial while cladding stresses in rods with sphere-pac fuel were mostly in the hoop direction. These results are indicative of superior PCI resistance in the annular pellet fuel rod designs when compared to the reference and sphere-pac rods.