ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
John O. Barner, Richard J. Guenther, Maxwell D. Freshley, Carl E. Crouthamel
Nuclear Technology | Volume 63 | Number 1 | October 1983 | Pages 63-81
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT83-A33303
Articles are hosted by Taylor and Francis Online.
The fuel cladding mechanical interaction behavior of developmental fuel rods irradiated in the Halden Boiling Water Reactor was evaluated based primarily on rod elongation measurements made during steady-state and power-ramping irradiation. The developmental fuel rod designs were selected based on attributes that were expected to reduce pellet-cladding interaction (PCI) failures during irradiation. Testing results were compared to a nonpressurized reference design with dished-pellet fuel. For the reference rods, there was a relationship between thermal feedback and fuel-cladding mechanical interaction during steady-state irradiation. Significant cladding stresses developed in both the axial and hoop directions in the reference rods during power ramping. During power ramping the general cladding stress distribution in fuel rods with annular fuel pellets was primarily axial while cladding stresses in rods with sphere-pac fuel were mostly in the hoop direction. These results are indicative of superior PCI resistance in the annular pellet fuel rod designs when compared to the reference and sphere-pac rods.