ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
Jinhui Liu, Fangyu Gu
Nuclear Technology | Volume 140 | Number 2 | November 2002 | Pages 164-168
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT02-A3330
Articles are hosted by Taylor and Francis Online.
This paper presents a new mass and energy estimating method for loose parts (LPs) combining the Karhunen-Loève (K-L) transform and neural network theories in the frequency domain. The detection of LPs was performed using simulated acoustic sensors mounted on the wall of a simulator of a reactor vessel. The impact events were simulated by simple pendulums. The data sampled in the time domain was changed to power spectral densities in the frequency domain using the fast Fourier transform. Then, the K-L transform was used to compress the original information. The final feature space's dimensions can be much less than the original ones. And, the original information remains as much as possible. The experiment showed that the impact characteristics of the LPs could be exactly depicted in the compressed feature space. The calculated mass values were approximately equal to the actual ones.