ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jinhui Liu, Fangyu Gu
Nuclear Technology | Volume 140 | Number 2 | November 2002 | Pages 164-168
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT02-A3330
Articles are hosted by Taylor and Francis Online.
This paper presents a new mass and energy estimating method for loose parts (LPs) combining the Karhunen-Loève (K-L) transform and neural network theories in the frequency domain. The detection of LPs was performed using simulated acoustic sensors mounted on the wall of a simulator of a reactor vessel. The impact events were simulated by simple pendulums. The data sampled in the time domain was changed to power spectral densities in the frequency domain using the fast Fourier transform. Then, the K-L transform was used to compress the original information. The final feature space's dimensions can be much less than the original ones. And, the original information remains as much as possible. The experiment showed that the impact characteristics of the LPs could be exactly depicted in the compressed feature space. The calculated mass values were approximately equal to the actual ones.