ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Werner Maschek, Margaret W. Asprey
Nuclear Technology | Volume 63 | Number 2 | November 1983 | Pages 330-336
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT83-A33291
Articles are hosted by Taylor and Francis Online.
The behavior of a homogeneous reactor core of the 300-MW(electric) class has been evaluated during the pretransition and transition phases of a hypothetical loss-of-flow accident without scram. The SIMMER-II code has been used to track core material redistribution processes, which can lead to recriticalities and secondary nuclear power excursions. One of the key questions of core disruptive accident analysis is if core meltdown inevitably leads to a bottled-up core situation with its energetics potential or if various phenomena exist (as material discharge of hot fuel through the axial blankets, drop-in of blanket material into the core region, etc.) that prevent the accident progression into a bottled-up transition phase pool. The analyses for the specified reactor design show that, taking into account the aforementioned phenomena, the dominant accident path will lead to the postaccident heat removal phase directly from the pretransition phase. The accident path into the transition phase with a bottled-up core situation and its energetics potential might thereby be avoided.