ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Winfried Amian, Detlev Stöver
Nuclear Technology | Volume 61 | Number 3 | June 1983 | Pages 475-486
Technical Paper | New Directions in Nuclear Energy with Emphasis on Fuel Cycles / Nuclear Fuel | doi.org/10.13182/NT61-475
Articles are hosted by Taylor and Francis Online.
Fractional releases of silver and cesium from irradiated silicon-carbide-layered coated particles have been measured during isothermal anneals in the temperature range between 1273 and 1773 K. The release rates measured have been evaluated with the aid of a statistical numerical treatment based on a simple diffusion model in multizone geometry. The resulting diffusion coefficients can be described byfor silver andfor cesium, respectively. A statistical treatment of the data gives corresponding 95% confidence limits. It is argued that the pathway of cesium and silver transport in siliconcarbide layers is grain boundary diffusion. This explains the large scatter found in the data for coating layers because the defect structure depends on the individual manufacturing conditions and varies from coating to coating. Comparison with data from the literature shows the superiority of silicon carbide with respect to silver retention relative to diffusion rates in pyrocarbons, while cesium data indicate no distinct improvement.